Solving the infinite-horizon constrained LQR problem using splitting techniques
نویسندگان
چکیده
This paper presents a method to solve the constrained infinite-time linear quadratic regulator (LQR) problem. We use an operator splitting technique, namely the alternating minimization algorithm (AMA), to split the problem into an unconstrained LQR problem and a projection step, which are solved repeatedly, with the solution of one influencing the other. The first step amounts to the solution of a system of linear equations (with the possibility to pre-factor) and the second step is a simple clipping. Therefore, each step can be carried out efficiently. The scheme is proven to converge to the solution to the infinite-time constrained LQR problem and is illustrated by numerical examples. Constrained LQR, Alternating minimization, Operator splitting
منابع مشابه
On infinite horizon switched LQR problems with state and control constraints
This paper studies the Discrete-Time Switched LQR problem over an infinite time horizon, subject to polyhedral constraints on state and control inputs. Specifically, we aim to find an infinite-horizon hybrid-control sequence, i.e., a sequence of continuous and discrete (switching) control inputs, that minimizes an infinite-horizon quadratic cost function, subject to polyhedral constraints on st...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملComputation of the constrained infinite time linear quadratic regulator
This paper presents an efficient algorithin for coiiiputing the solution to the constrained infinite time linear quadratic regulator (CLQR) problem for discrete time systems. The algorithm coinbiiies multi-parametric quadratic programming with reachability analysis to obtain the optiinal piecewise affine (PWA) feedback law. The algorithm reduces the time necessary to compute the PWA solution fo...
متن کاملUsing Generalized Fibonacci Sequences for Solving the One-Dimensional LQR Problem and its Discrete-Time Riccati Equation
In this article we develop a method of solving general one-dimensional Linear Quadratic Regulator (LQR) problems in optimal control theory, using a generalized form of Fibonacci numbers. We find the solution R (k) of the corresponding discrete-time Riccati equation in terms of ratios of generalized Fibonacci numbers. An explicit Binet type formula for R (k) is also found, removing the need for ...
متن کامل